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Abstract-Solutions of the two Reissner-Meissner linear equations for the torsionless, axisymetric
deformation of elastically isotropic shells of revolution of constant thickness subject to edge conditions and
variable normal pressure are compared with the solutions of a simplified version of these equations obtained
by neglecting terms containing Poisson's ratio. The relative pointwise differences in the predicted values for
the change in the meridional angle and a stress function are shown to be of the same order of magnitude as the
inherent errors in classical, first-approximation shell theory. These results do not depend on physical
arguments or asymptotic integration techniques, but rather follow from the structure of the Reissner
Meissner equations themselves. The advantage of the simplified equations is that they may be combined into
a single comple.valued equation containing no conjugates of the dependent variable.

I. INTRODUCTION

The equations governing the torsionless, axisymmetric deformation of shells of revolution can be
expressed as two coupled second order ordinary differential equations-a remarkable reduction
considering that in the classical, first-approximation theory of general shells, the field equations
are a system of eighth order partial differential equations. Symmetry, of course, makes all
differential equations ordinary, and exclusion of torsion reduces the order of the general system
by two. An additional reduction in order is achieved by explicit integration of the differential
equation of axial force equilibrium. The final reduction in order results from an integration of the
analogous compatibility condition.

A special case of this reduction was first achieved in 1912 by H. Reissner[1], who reduced the
linear equations for the torsionless, axisymmetric deformation of a spherical shell to two coupled
equations for ~, the change in the midsurface meridional angle and Q, the transverse shear stress
resultant. Shortly thereafter, Meissner[2] extended Reissner's reduction to arbitrary shells of
revolution. In 1949, E. Reissner[3] introduced a valuable modification into the Reissner-Meissner
equations by replacing the dependent variable Q by rH, where r is the radial distance from the
shell axis and H is the horizontal stress resultant, thereby obtaining a set of equations which
passed uniformly into the uncoupled equations for the axisymmetric bending and stretching of a
plate. (Subsequently, E. Reissner[4] showed that the same choice of dependent variables leads to
an analogous and concise reduction of the equations governing the torsionless, nonlinear
axisymmetric deformation of shells of revolution.)

An additional simplification of the Reissner-Meissner equations, proposed by several writers
(for example Naghdi and DeSilva[5], Baker and Cline [6], Steele and Hartung [7], and Clark [8]), is
to neglect terms containing the Poisson ratio factors (l ± v). This step enables the two resulting
equations to be combined into a single, complex-valued second order differential equation which,
among other things, facilitates the application of asymptotic integration techniques [8].

The neglect of such terms may be justified, even for arbitrary shells, on physical
grounds [9, 10]. For shells of revolution, asymptotic integration techniques imply that the
influence of such terms is negligible. However, there are drawbacks to these arguments: the
physical arguments yield no pointwise estimates of the solution errors induced by dropping the
Poisson-ratio terms, while the error estimates supplied by the asymptotic methods may be too
pessimistic in certain cases. Moreover to make these latter error estimates rigorous, one must use
the properties of the solutions of a comparison differential equation. The analytical nature of
these solutions depends critically on the geometry of the mid-surface meridian in the
neighborhood of any points on the axis of revolution or where the slope is zero, and may be
complicated.

tThis research was supported by the National Science FoundatiOl'l under Grant GP-38197.

1051



1052 JAMES G. SIMMONDS

The aim of the present paper is to provide a rigorous estimate of the solution errors induced
by neglecting Poisson-ratio terms in the Reissner-Meissner equations. We show, for shells
subject to prescribed edge forces and rotations and variable normal pressure, that

(1.1 )

where !/J is a nondimensional form of rH and 13. and !/J. are the solutions of the simplified
Reissner-Meissner equations. Here R1/ is meridional arc length and R is some characteristic
geometrical dimension of the midsurface; N(1/) is a function which remains bounded providing
the meridian does not meet the axis of revolution in a cusp, €2 is proportional to h/R, where h is
the shell thickness (taken constant) and U. is the dimensionless strain energy functional
associated with the Reissner-Meissner equations, evaluated at the solution of the simplified
Reissner-Meissner equations. We note that asymptotic integration techniques yield a formal error
estimate that is only Ole) (see eqn (24) of [8]). However, the best estimates we can expect for the
derivative differences 113' - f3~1 and I!/J' !/J~I are OlE).

2. THE REISSNER-MEISSNER EQUATIONS

Consider a shell of revolution whose midsurface, referred to a set of right-hand cylindrical
coordinates (r, 8, z), is specified in the parametric form r = r(s), z = z(s), 0~ s ~ L, where s is
arc length. For torsionless, axisymmetric deformation, the linear moment equilibrium and
compatibility conditions-the two fundamental equations in the Reissner-Meissner theory-can
be expressed as

(rM,)' - Me cos cP - rQ = 0

(rfe )' - r, cos cP + 13 sin cP = o.

(2.1)

(2.2)

Here, M, and Me are stress couples, Land f e are meridional and hoop strains, cos ¢J == r'(s),
sin ¢J = z'(s) and a prime denotes differentiation with respect to s.

The two equations of force equilibrium involve the stress resultants N., Ne and Q and are
satisfied identically by taking

rN, = 'I' cos ¢J + rV sin ¢J

Ne == '1" + rP sin cP

rQ 'I' sin cP - rV cos cP,
where 'I' is a stress function,

rV=r(O)V(O)+ f P(t)r(t)coscP(t)dt,

(2.3)

(2.4)

(2.5)

(2.6)

and the only external surface load is assumed to be a variable normal pressure P. V represents
the vertical force per unit length acting along a parallel circle of the midsurface.

We assume that the shell obeys the following elastically isotropic, uncoupled stress-strain
relations:

M, = D(K., +aXe), Me == D(Ke +uK,)

f e = A (Ne vN,). L == A (N, - tN.),

where the bending strains are related to the meridional angle of rotation by

K., 13', rK. = 13 cos cPo

It is conventional, but not necessary, to take

where E is Young's modulus.

(2.7)

(2.8)

(2.9)

(2.10)
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Inserting (2.3), (2.4) and (2.7)-(2.9) into (2.1) and (2.2), and introducing dimensionless
quantities through the relations

s = RTj, L = Ri, r = Rp, 'J! = Y(D/A)I{!

Q = Y(D/A)(q/R), V = Y(D/A)(v/R), P = Y(D/A)(p/R 2) (2.11)

f 2YWA)/R = O(h/R),

we have

f2{(pf3' + (Tf3 cos cP)' - (f3/p) cos 2cP - (Tf3' cos cP} = pq

f2{[pl{!' +pp2 sin cP - v(1{! cos cP + pv sin cP)]'

- [(I{!/p) cos cP + v sin cP - v(I{!' +pp sin cP)] cos cP} = -13 sin cP,

where now primes denote differentiation with respect to 1/ and

pq = 'J! sin cP - pv cos cPo

(2.12)

(2.13)

(2.14)

Noting that (2.6) implies (pv)' = pp cos cP, we obtain, after some algebra, the Reissner
Meissner equations

f2[Lf3 +(1- (T)c/J' sin c/Jf3] - pq = 0 (2.15)

f2[L'J! +(1 + V )cP'pq] + 13 sin cP = f2[(sin cP - PcP')v cos cP - (pp2 sin)'], (2.16)

where

(2.17)

The simplified Reissner-Meissner equations follow upon neglecting the underlined terms. With
the aid of (2.14), they may be expressed as

(2.18)

(2.19)

3. RIGOROUS JUSTIFICATION OF THE SIMPLIFIED REISSNER·MEISSNER EQUATIONS

Clark [8] justified the neglect of the underlined terms in (2.15) and (2.16) on two grounds. First,
he remarked that in particular problems 13 and q are of the same order of magnitude. Hence
the neglected terms can be expected to be O(f2). And second, he observed that the inclusion of
transverse shearing strains results in an order one modification of the underlined term in (2.16)
(See eqn. (29) of [11]). Hence the neglect of this term is consistent with the basic assumptions of
first-approximation shell theory.

The arguments used by the author [9] and Danielson [10] to justify neglecting similar terms in
general shell theory are related to Clark's and assume that in equations resulting from the
introduction of stress-strain relations, any term may be neglected which is of the same order and
type as any term which would arise were a (necessarily negligible) coupling term to be added the
stress-strain relations. The best result, to date, is that this supposition leads to negligible errors, in
a mean square sense, for shells with midsurfaces of constant mean curvature[12].

As an alternative to these essentially physical arguments, we shall now show that the validity
of the approximation of Clark and others follows from the structure of the Reissner-Meissner
equations themselves.

We assume that (2.15), (2.16) and (2.18), (2.19) have unique solutions, each taking on the same
prescribed values of 13 and I{! at 1/ = 0 and 1/ = 1. Then the differences

Ii = 13 - 13·, ~ = I{! -I{!. (3.1)
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satisfy the nonhomogeneous equations
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f2[L +(1 + v)cP' sin cP]~ + {3 sin cP = -f2(1 + v)cP'(l/J. sin cP -pv cos cP) (3.3)

and the homogeneous boundary conditions

{3 (0) = {3 (/) = ~(O) = ~(/) = O. (3.4)

First, we obtain energy estimates for {3 and ~. To this end we define, for any two pairs of
integrable functions (j, g) and if, g), the (dimensionless) energy inner product

(3.5)

and let

0.6)

denote the (dimensionless) energy norm. Note that if lal =1, the energy norm is only
semi-definite.

Multiply (3.2) by {3, (3.3) by ~, add and integrate from 1/ = 0 to 1/ = t. Upon integration by
parts and application of the boundary conditions (3.4), the left-hand side of the resulting equation
reads

(3.7)

(Here and henceforth, we write p' in place of cos cP for conciseness.)
To evaluate the right-hand side, we use (2.18) to replace l/J. sin cP - pv cos cP by f

2L{3. and
note that if we solve (2.19) for -{3. sin cP, the resulting equation can be cast into precisely the
same form as the left-hand side of (2.13), with l/J replaced by l/J. and v replaced by -I.
Integration by parts and observation of (3.4) then yields

f4{(l + V)E1[{3~, (p'/p){3.; (CP'~Y, (p'/p)cP~]

-(1-a)EI[l/J~+PP sin cP,(p'/p)l/J.+ v sincP; (cP'{3Y,(p'/p)cP'{3]). (3.8)

Let

IIIII = (f lp d1/) 1/2

denote the weighted, L 2-norm of any function I and set

K = max !cP'(1/)I.
OSTJsI

(3.9)

(3.10)

Note that K, the maximum (dimensionless) meridional curvature, must be finite for shell theory to
apply. By the bilinearity of E,n the inequality

(3.11)

Schwarz' inequality

(3.12)

and its special case

(3.13)
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it follows that (3.8), in magnitude, is less than or equal to

4e 2(1- vf\l +aT 1{(1 + v)II/3:, (p'{p)/3.II"

x [ KII~', (p' {p )~II-v +~(1- v)II¢"~IIJ

+(I - (7" )111/1: +pp sin ¢. (p'! p)1/1. + v sin ¢II-v

x [Kllt3', (p'!p)t3ll" +~(1 +(7")II¢"t3ll]}.

To further reduce (3.14), let

_ (1 + (7")II¢"[11
A" -max 211f', (p'!p)fll,,'
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(3.14)

(3.15)

where the maximum is taken over all non-zero functions satisfying [(0) = [(I) = O. (A" = 0 for
cylindrical, conical, spherical or toroidal shells.) Equating the absolute values of (3.7) and (3.8),
dividing by e2Y(a 2 + b2

) and using (3.14) and (3.15) together with the inequalities

(3.16)

we arrive at

1113', (p'!p )1311", II~', (p'{p )~II-v

::s4e\1- vfl(1 +(7")-1[(1 + V)(K +L v)II/3:, (p'!p)/3.II"

+(1- (7")(K +A,,)III/I: +pp sin ¢, (p'!p)I/I.+ v sin ¢II-v
(3.17)

where K is a constant depending on (7", v and I, and U. is the (dimensionless) strain energy
functional of the Reissner-Meissner theory evaluated at the solution of the simplified
Reissner-Meissner equations.

Pointwise estimates for 13 follow upon first observing that 13(0) = 13(1) =0 implies

where
(3.18)

(3.19)

M(T/) will be bounded so long as the meridian does not meet the shell axis in a cusp. Now

(3.20)

Hence, by (3.17),

(3.21)

A similar analysis shows that

(3.22)

The inequality (1.1) follows upon assuming 0~ (7", v ~ ~ and setting N =; KM.
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